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ABSTRACT
The Arwen Trading Protocol is a layer-two blockhchain
protocol that allows traders to securely trade cryptocur-
rencies at a centralized exchange, without ceding cus-
tody of their coins to the exchange. Before trading be-
gins, traders deposit their coins in an on-blockchain es-
crow, rather than in the exchange’s wallet. The agent of
escrow is the blockchain itself. Each individual trade is
backed by the coins locked in escrow. Each trade is fast,
because it happens off-blockchain, and secure, because
atomic swaps prevent even a hacked exchange from tak-
ing custody of a trader’s coins. Arwen is designed to
work even with the “lowest common denominator” of
blockchains—namely Bitcoin-derived coins without Seg-
Wit support. As a result, Arwen supports essentially
all “Bitcoin-derived” coins, including BTC, LTC, BCH,
ZEC as well as Ethereum and ERC-20 tokens.

1. INTRODUCTION
The promise of blockchain-backed cryptocurrencies is

the ability to transact in digital assets without rely-
ing on a single trusted party. Blockchains therefore
present a technical breakthrough that circumvents a
long-standing result in cryptography: namely, that atomic
swaps are impossible without the help of a trusted third
party [26]. In an atomic swap, two parties that do not
trust each other swap items, such that either (1) both
Alice gets Bob’s item and Bob gets Alice’s item, OR (2)
neither Bob nor Alice gets the other party’s item. In
fact, atomic swaps of digital assets are possible when
the blockchain acts as the trusted third party [7].

Fully realizing the promise of blockchain-backed cryp-
tocurrencies demands that atomic swaps be brought
into the mainstream. Today, we still live in a world
where the vast majority of cryptocurrency trading re-
quires traders to trust either each other, or a centralized
cryptocurrency exchange. This seems absurd. Much of
the value of a blockchain-backed cryptocurrency follows
because it does not rely on a single trusted party. Why,
then, is a single trusted party still required when trading
cryptocurrency?

The Arwen Trading Protocol seeks to deliver on this
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promise by bringing atomic swaps to the mainstream
use case of cryptocurrency trading. With Arwen, traders
can benefit from the liquidity at a centralized cryptocurrency-
to-cryptocurrency exchange without trusting the exchange
with custody of their coins. Instead, Arwen traders
maintain custody of their cryptographic keys and their
coins, and Arwen trades are backed by on-blockchain es-
crows. Each coin’s native blockchain acts as the agent of
escrow (i.e., the agent of escrow for bitcoins is the Bit-
coin blockchain). Arwen trades are fast because they
happen off blockchain, and secure, because they are
atomic swaps. Arwen ensures that even a compromised
exchange cannot steal a trader’s coins, and that a mali-
cious user cannot grief or steal coins from the exchange.

Arwen is designed to align incentives for the trad-
ing use case, and to support trading instruments from
traditional financial markets. Arwen is focused on the
cross-blockchain trading use case, Arwen must support
as many coins as possible. For this reason, the Arwen
protocols are designed to work even with the “lowest
common denominator” of Bitcoin-derived coins without
SegWit [39] support. As a result, Arwen supports es-
sentially all “Bitcoin-derived” coins, including Bitcoin
(BTC), Litecoin (LTC), Bitcoin Cash (BCH), Zcash (ZEC)),
etc.as well as Ethereum and ERC-20 tokens.

2. WHITHER ATOMIC SWAPS?
There has been a flurry of activity that seeks to bring

cross-blockchain atomic swaps to the mainstream. A
cross-blockchain atomic swap allows one cryptocurrency
(e.g., Bitcoin (BTC)) to be atomically swapped for an-
other cryptocurrency (e.g., Bitcoin Cash (BCH)). Nev-
ertheless, there are number of subtle issues that prevent
known solutions from seeing widespread adoption for
cryptocurrency trading. We now highlight several of
these issues, and explain how Arwen overcomes them.

2.1 The promise of atomic swaps.
Cross-blockchain atomic swaps seek to supplant to-

day’s dominant form of cryptocurrency trading: cus-
todial trading at centralized cryptocurrency exchanges.
With custodial trading, when users wish to trade on a
centralized exchange, they must first deposit their coins
at the exchange; this is done using an on-blockchain
transfer of coins from the user’s own wallet to the ex-
change’s wallet. Trading occurs within the databases
of the centralized exchange, and is not recorded on the
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blockchain. Finally, once trading is complete, users re-
gain custody of their coins by withdrawing their coins
from the exchange; that is, the exchange uses an on-
blockchain transaction to transfer coins from the ex-
change’s wallet back to the user’s wallet. Custodial
trading at a centralized exchange exposes the user to
serious counterparty risk—if the exchange is compro-
mised, the exchange may be unable to transfer coin back
to the user’s wallet. This risk has been realized, start-
ing with the hack of Mt. Gox [38] and affecting several
centralized exchanges, e.g., [10, 30, 16, 8, 24, 12, 18,
17, 31, 6, 40].

With cross-blockchain atomic swaps, a user would no
longer need to trust a centralized exchange with custody
of her coins. Instead, the user could maintain custody
of her coins even while she trades, and the user’s coins
would not be at risk even if her counterparty becomes
adversarial in the middle of a trade.

In an atomic swap of 1 BTC for 20 BCH, it is cryp-
tographically guaranteed that: (1) if the Alice trans-
fers her 1 BTC to her counterparty, even a malicious
counterparty cannot prevent Alice from claiming her 20
BCH, and (2) if the counterparty transfers his 20 BCH
to Alice, even a malicious Alice cannot prevent the coun-
terparty from claiming his 1 BTC.

Atomic swaps are an even stronger security paradigm
than “second send” protocols such as ShapeShift. In
a ShapeShift trade, Alice first transfers her 1 BTC to
ShapeShift’s wallet, and then ShapeShift transfers 20
BCH to Alice’s wallet. This is not an atomic swap, be-
cause an adversarial ShapeShift could always decide to
keep Alice’s 1 BTC without paying out her 20 BCH.
Thus, while such “second send” protocols are sometimes
referred to as non-custodial, they in fact have brief win-
dow of custody.

2.2 The challenge of providing liquidity.
Most decentralized exchange (DEX) protocols, includ-

ing EtherDelta [1], 0x [37], and SparkSwap [4], are peer-
to-peer trading systems, where each trade involves a
transfer of funds directly from trader Alice’s wallet to
trader Bob’s wallet. The peer-to-peer approach limits
liquidity, because it means that Alice can only trade
with traders that use that same peer-to-peer trading
system. If a system has too few users, it will not be
able to provide good liquidity.

Arwen eschews the peer-to-peer approach because, to-
day, the best liquidity for cryptocurrency trading can be
found at centralized exchanges. With Arwen, Alice can
benefit from the liquidity at a centralized exchange even
if she is the only Arwen user at the exchange. This fol-
lows because Arwen trades only involve the movement
of coins from the user’s wallet to the exchange’s wallet,
without the involvement of any intermediaries. In other
words, Arwen can be thought of as a secure settlement
leg for the centralized exchange. Meanwhile, orders are
priced as usual, using the centralized exchange’s exist-
ing orderbook.

2.3 The pitfalls of on-blockchain protocols.
Some of the best-known atomic swaps protocols are

on-blockchain protocols, where the swap does not actu-

ally execute until certain transactions are confirmed by
the blockchain.

Ethereum DEX protocols. Ethereum DEX pro-
tocols, including EtherDelta [1] and 0x [37], use the
Ethereum blockchain to trade one ERC-20 token for an-
other ERC-20 token. Both EtherDelta and 0x uses the
following protocol framework. First, Alice broadcasts
an order to the network without identifying a counter-
party. Some counterparty Bob then sees Alice’s broad-
cast, decides to trade with Alice, adds his information
to the order. Bob then posts the order to the Ethereum
blockchain, where it is then executed by a smart con-
tract on the Ethereum blockchain.

The Bitcoin TierNolan Protocol. The TierNolan
protocol [34] is the original Bitcoin-compatible atomic
swap; it can also be used for cross-blockchain atomic
swaps for “Bitcoin-like” blockchains (e.g., BCH, LTC,
ZEC, etc.). TierNolan uses Hashed Time-Locked Con-
tract (HTLC) smart contracts as follows.

Bob chooses a random solution x and computes a puz-
zle y, where y = H(x) and H is a cryptographic hash
function. Bob reveals the puzzle y to Alice and keeps
the solution x secret. Next, Alice locks up 1 BTC in an
HTLC smart contract on the Bitcoin blockchain which
stipulates: “before time τA, the 1 BTC can be claimed
by a transaction signed by Bob containing the solution
to puzzle y”. Bob similarly locks up 100 LTC on the
Litecoin blockchain in an HTLC, which stipulates: “be-
fore time τB, the 100 LTC can be claimed by a transac-
tion signed by Alice containing the solution to the puzzle
y”. The atomic swap executes when Bob reveals the x
or when he claims the 1 BTC by signing and posting a
transaction to the Bitcoin blockchain that contains the
solution x. (For convenience, we will call this a solve
transaction.) Once this happens, Alice learns the so-
lution x from the Bitcoin blockchain and can sign and
post a solve transaction to the Litecoin blockchain that
claims Bob’s 100 LTC.

Security follows from the cryptographic hash function
H (which ensures that no one can learn the solution x
given only the puzzle y) and the fact that Bob must
reveal x on the blockchain in order to claim his coins.

There are several issues with on-blockchain protocols.

Speed. On-blockchain execution is slow, because it is
limited by the speed at which the blockchain confirms
blocks. The expected time to confirm a single block is
about 10 minutes for Bitcoin (BTC) and Bitcoin Cash
(BCH), 2.5 minutes for Litecoin (LTC) and 15 seconds
for Ethereum (ETH). Moreover, a single confirmation is
often insufficent to ensure that a transaction can not be
reversed [13]; for instance, the cryptocurrency exchange
Kraken waits 6 confirmations (60 minutes) for BTC and
30 confirmations for ETH (6 minutes) [19]. Even a few
seconds of latency can be problematic when trading,
especially given that cryptocurrency prices are famously
volatile. An atomic swap protocol that is compatible
with high-frequency trading strategies must ensure that
trades execute instantly.

Scalability. If each individual trade needs to be con-
firmed on the blockchain, and a healthy trading ecosys-
tem leads to many trades, then the blockchain itself
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will be clogged up with transactions resulting from each
individual trade. Note that today’s custodial trading
ecosystem avoids this problem, since the only transac-
tions that need to be confirmed on the blockchain cor-
respond to deposit and withdrawal of coins from the
exchange. To avoid clogging the blockchain, an atomic
swap protocol should require the blockchain to confirm
only the consolidated balance across multiple trades.

Front-running. The EtherDelta and 0x protocols
require the trader to broadcast information about the
trade to all nodes on the blockchain before the trade is
executed by the blockchain. This can lead to race con-
ditions. Any blockchain node can learn the details of
Alice’s trade with Bob, and attempt to profit from it by
front-running Bob’s trade with its own trade [37]. These
protocols also allow a trader to cancel a order (e.g., due
to changing market conditions) by posting a cancella-
tion request the blockchain. The on-blockchain nature
of this cancellation is also subject to race conditions, be-
cause a blockchain node Charlie could add himself as a
counterparty to Alice’s order before the blockchain has
a chance to cancel it. These race conditions, however,
are avoided by the TierNolan protocol because Alice and
Bob are required to identify each other counterparties
at the moment that they lock up coins in the HTLC
smart contract.

The Arwen Trading Protocol avoids speed and scal-
ability pitfalls, because individual trades execute off-
blockchain. Arwen also avoids the front-running prob-
lem by building trading instruments that complement
the puzzle approach pioneered by TierNolan; see Sec-
tion 2.6.

2.4 Trading in a layer-two protocol
Because Arwen atomic swaps are executed entirely

off-blockchain, Arwen falls into the same class of blockchain
layer-two protocols [25] as the Lightning Network [29].

In a blockchain layer-two protocol, parties first lock
up their coins in an on-blockchain smart contract. The
coins locked in the smart contracts are then transferred
between the parties via off-blockchain interactions. Fi-
nally, the smart contract is closed on the blockchain, re-
flecting the parties’ balance, consolidated across all the
off-blockchain transfers. Blockchain layer-two protocols
are fast, because coins are moved off-blockchain, and
scalable, because only consolidated balances are posted
to the blockchain.

Arwen escrows. Arwen’s on-blockchain smart con-
tracts are called escrows. Before trading begins, Al-
ice deposits her coins in an on-blockchain user escrow,
where the agent of escrow is the blockchain itself. The
exchange also deposits coins in an on-blockchain ex-
change escrow, to prove to Alice that the exchange holds
enough coins to collateralize its trades. Each exchange
escrow is specific to a single user (i.e., Alice) and a sin-
gle coin (e.g., Bitcoin Cash). Escrows are opened and
closed by confirming a transaction on the coin’s native
blockchain. (So, to open a Bitcoin Cash exchange es-
crow for Alice, the exchange confirms a transaction on
the Bitcoin Cash blockchain.)

Multiple fast off-blockchain atomic-swap trades can

be executed against a given pair of escrows. Thus, if
Alice wanted to trade 1 BTC for 20 BCH, Alice trade
would be backed by Alice’s user escrow for Bitcoin, and
Alice’s exchange escrow for Bitcoin Cash. If Alice has
multiple open user escrows with a given exchange (e.g.,
a user escrow for BTC and a user escrow for ZEC), Alice
can pair them with any of her open exchange escrows
(e.g., an exchange escrow for BCH and an exchange
escrow for ETH). This way, Alice can trade across mul-
tiple currency pairs (BTC-BCH, BTC-ETH, ZEC-LTC
and ZEC-ETH).

To compensate the exchange for locking its coins in
escrow, Alice pays an escrow fee each time the exchange
funds an exchange escrow for her. The exchange could
fund exchange escrows from its own inventory of coins.
Alternatively, the exchange could fund exchange escrows
using deposits provided by custodial users of the ex-
change, and pay these custodial users a part of the es-
crow fee. This creates a new interest-bearing feature
that the exchange can offer to its custodial users.

Arwen vs. the Lightning Network. While Light-
ning is designed for the use case of fast peer-to-peer
Bitcoin micropayments, Arwen is designed for the use
case of cryptocurrency trading. Arwen therefore avoids
some of the incentive issues that result when layer-two
micropayment systems (like Lightning) are repurposed
to enable large value trades via atomic swaps.

In the Lightning Network, Alice, Bob and any in-
termediate nodes on the path first lock their coins in
on-blockchain smart contract—one smart contract for
every consecutive pair of nodes on the path—and then
move coins along the path via a series of off-blockchain
atomic swaps. Arwen does not use a path of interme-
diate nodes; instead, coins are transferred only between
Alice and the exchange. This eliminates the risk that
an intermediate node will strategically disrupt a trade
in order to manipulate market prices.

Lightning only works with blockchains that have Seg-
Wit support; such as only Bitcoin and Litecoin. Arwen
does not require SegWit support. This means that Ar-
wen works with more “Bitcoin-derived” blockchains, in-
cluding both coins with SegWit support and coins which
have not deployed SegWit such as Bitcoin Cash, Zcash,
and others. Technically speaking, supporting “Bitcoin-
derived”blockchains that lack SegWit requires Arwen to
withstand transaction malleability attacks, as discussed
in Section 7. Arwen also has support for Ethereum and
ERC-20 tokens [36], as discussed in Section 6.

2.5 Dealing with lockup griefing.
Lockup griefing affects any protocol that requires users

to lock coins in a smart contract. We describe the prob-
lem, and explain how Arwen solves it via reputation and
a novel escrow fee mechanism.

Lockup griefing in TierNolan. In the TierNolan
protocol, Alice’s coins and Bob’s coins are locked in
their smart contracts until either (1) the trade executes
or (2) the timelock on the smart contract expires at
time τ . These timelocks τA, τB must at least as long
as the time it takes to reliably confirm transactions on
the blockchain, i.e., several hours. The fact that coins
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must locked for a long time can creates “lock-up grief-
ing” problem, where Alice locks her coin in her smart
contract, but Bob refuses to lock his own coins. Alice’s
coins are thus pointlessly locked in the smart contract
until it expires at time τA. (Alice could similarly launch
a lockup-griefing attack on Bob.) TierNolan lacks a
mechanism to incentivize Alice and Bob to avoid lockup
griefing. This is especially problematic when Alice and
Bob are two random people that met over the Internet.

Lockup griefing in Lightning. Lightning nodes
earn fees for transfers of coins across their channel; how-
ever, if no transfer of coins occurs, no fees will be earned,
which can lead to lockup griefing. Worse yet, a node on
the Lightning path between Alice and Bob could also
decide to strategically close its smart contract, breaking
the path from Alice to Bob. The makes it risky to use
Lightning for very high-value trades, where the incen-
tive to disrupt a trade can be very significant. This risk
is further exacerbated by the fact that Alice and Bob
may have no relationship with the intermediate nodes
on the Lightning path.

Using reputation to avoid lockup griefing. Ar-
wen sidesteps the risk of lockup griefing because its
interactions only involve the trader Alice and the ex-
change, rather than a peer Bob or a path of intermediate
nodes. The exchange has no incentive to launch a lockup
griefing attack against Alice; such an attack harms the
exchange’s reputation, and prevents Alice from trading,
which is the exchange’s main source of revenue.

Using escrow fees to avoid lockup griefing. The
exchange, however, must protect itself from lockup grief-
ing by a trader Alice, who might ask the exchange to
lock up coins in exchange escrows willynilly, without
actually executing any trades against those exchange
escrows. Arwen therefore requires Alice to lock up her
own coins in a user escrow before she can ask the ex-
change to lock up its own coin in an exchange escrow.
Arwen also introduces a novel escrow fee mechanism (see
Section 3.5) that compensates the exchange for locking
up coins for Alice. Arwen’s escrow fees are an in-band
mechanism designed to avoid the introduction of out-of-
band payments or of a superfluous fee token. The mech-
anism generates revenue for the exchange from locked-
up coins, while encouraging the user to close her ex-
change escrows (and unlock the exchange’s coin) in a
timely manner once she is done trading.

2.6 Atomic swaps as trading instruments.
The vision behind Arwen is to use atomic swaps in

traditional trading instruments. For this reason, Ar-
wen is specifically designed to avoid a misalignment of
incentives. We’ve already discussed how Arwen aligns
incentives when opening and closing escrows; we now
focus on the incentives involved in trading.

To understand the importance of designing the incen-
tive structure used in trading instruments, we return
again to the TierNolan protocol.

TierNolan as an American call option. The
TierNolan Protocol is asymmetric, because only Bob
chooses and knows the secret solution x. This means
that Bob has the unilateral ability to decide whether

or not the atomic swap executes, by revealing x (or
not). Because the timelocks τA, τB on the smart con-
tracts must at least as long as the time it takes to con-
firm transactions on the blockchain, Bob has minutes
or hours to decide whether market conditions justify
the execution of the swap (or not). This means that the
TierNolan Protocol is actually an American call option:
namely, Bob has the right, but not the obligation, to
buy 1 BTC from Alice at a strike price of 100 LTC, any
time before the expiry time τ . Typically, the asymme-
try in an option is handled by requiring Bob to pay a
premium to Alice before the option is set up. However,
in the TierNolan Protocol, Bob gets the option for free,
resulting in a misalignment of incentives.

This American call option is implicit in many atomic
swap protocols. For instance, it exists whenever the
Lightning Network is used for peer-to-peer trading be-
tween Alice and Bob. By contrast, Arwen swaps are
explicitly designed to support different trading instru-
ments. The first version of Arwen supports Request For
Quote (RFQ) trading instrument, while limit orders are
next on the Arwen roadmap.

RFQ trading with Arwen. Arwen’s RFQ trading
instrument is a off-blockchain atomic swap. In an RFQ
trade, the exchange commits to a price, called the quote,
before Alice decides whether or not to place an order for
the trade. (Request: “How many BCH can I buy for 2
BTC?” Quote: “You can buy 40 BCH, quote open for 1
second”) If Alice places the order before quote expires,
Alice cannot back out of the trade and the exchange is
expected to execute a trade (of exactly 2 BTC for 40
BTC). Importantly, RFQs are inherently asymmetric,
because Alice gets to decide whether the trade happens
or not. Therefore, to align incentives, the exchange’s
quote includes a spread around the current market price;
this compensates the exchange for any volatility in mar-
ket prices between the time the quote is given and the
time the trade is executed.

Arwen RFQs also include an way out for the exchange.
In times of strife, when the exchange is unable to execute
a trade against a quote it provided, the exchange does
have the option to abort a trade. The abort is possible
because Arwen’s off-blockchain RFQ trading instrument
is built from HTLC smart contracts similar to those of
TierNolan. Specifically, the exchange chooses a secret
solution x to a puzzle y = H(x), and releases x in order
to execute the trade. To abort the trade, the exchange
refuses to release x. The aborted trade, however, is
ungraceful and costly because it requires the user and
exchange to stop trading and close the escrows backing
the aborted trade. While no coins are lost, this suf-
ficiently harmful to the exchange’s reputation that we
would expect an exchange to avoid aborting whenever
possible. A full protocol description is in Section 5.

Limit orders with Arwen. Arwen also supports
off-blockchain fill-or-kill limit orders, where the user to
tells the exchange the lowest price at which she is willing
to buy or sell coins. (i.e., Order: “I will sell 2 BTC if
I can buy at least 40 BCH”) A fill-or-kill order is only
executed by the exchange if it can be completely filled
(i.e., if all 40 BCH can be bought by the user). The user
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also has the ability to cancel the order. This instrument
is well aligned with the exchange’s incentives, because it
can execute the limit order instantly, once market prices
align with the user’s order. It also aligns with the user’s
incentives, because she can essentially “name her price”
and easily adjust her price based on market conditions
(by cancelling the order).

2.7 White paper overview.
The rest of this paper is organized as follows. In

Section 3, we start with an overview of Arwen that
covers Arwen escrows, escrow fees, and the basics of
off-blockchain trading. We then provide a detailed de-
scription of Arwen’s unidirectional RFQ protocol for
“Bitcoin-derived” blockchains, including those that do
not support SegWit. Section 7 explains the reasons
why this protocol withstands transaction malleability
attacks on blockchains like BCH that lack SegWit sup-
port. We describe how to port the unidirection RFQ
protocol to Ethereum and ERC-20 tokens in Section 6.
Arwen’s bidirectional RFQ protocol is in Section 8 and
bidirectional limit order protocol is in Section 9. We
compare Arwen to other atomic swap and layer-two pro-
tocols in Section 10.

3. ARWEN OVERVIEW
The Arwen Trading Protocol is a blockchain-backed

two-party cryptographic protocol between a user Al-
ice and a centralized cryptocurrency exchange. Alice
first locks her coins in an on-blockchain user escrow.
Next, Alice asks the exchange to lock its coins in an
on-blockchain exchange escrow. To compensates the ex-
change for locking up its coins, Alice pays and escrow fee
to the exchange using the coins Alice locked in her user
escrow. Alice can now trade across a pair of escrows.
Each individual trade is an off-blockchain atomic swap,
using one of the Arwen trading instruments described in
Sections 5. Finally, the escrows are closed and the coins
are released to the wallets of the user and the exchange.

3.1 The Arwen Daemon
The user executes the Arwen Trading Protocol using

the Arwen Daemon. The Arwen Daemon is an open-
source executable that the user downloads to her local
machine. The Arwen Daemon allows the user to engage
in the Arwen Trading Protocol without trusting a third-
party or a webserver, thus realizing the promise of non-
custodial cryptocurrency trading. The Arwen Daemon
performs the cryptographic operations involved in the
Arwen Trading Protocol, posts and verifies transactions
from relevant blockchains, and stores the secret trading
keys used to securely trade against the Arwen escrows.

3.2 Opening on-blockchain escrows.
Escrows are opened and closed by confirming a trans-

action on the coin’s native blockchain. (Thus, the trans-
action that opens an escrow for bitcoins is confirmed on
the Bitcoin blockchain.) Opening and closing escrows
takes the same amount of time it would take to deposit
or withdraw coins from a custodial centralized exchange.

This exposition below assumes that Alice wishes to

trade her bitcoins for some litecoins, as shown Figure 1.

User escrow. Alice funds the on-blockchain user es-
crow that is specific to this exchange. The user escrow
locks e.g., 5 BTC from the user’s wallet on the Bitcoin
blockchain until some pre-agreed-upon expiry time twA.
The initial balance in this escrow is 5 BTC owned by the
user, and 0 BTC owned by the exchange. While the es-
crow is open, these coins are locked and cannot be used
for anything other than cryptocurrency trades with the
exchange. Once the escrow is closed, the balance of the
coins owned by the user are released and transferred to
the user’s wallet, and the balance of the coins owned
by the exchange are released and transferred to the ex-
change’s wallet.

Exchange escrow. The exchange funds the exchange
escrow that is specific to this user Alice. To open the
exchange escrow, Alice pays the exchange an escrow fee,
as described in Section 3.5. The exchange escrow locks
500 LTC from the exchange’s wallet on the Litecoin
blockchain until some pre-agreed-upon expiry time tw .
The locked coins cannot be used for anything other than
cryptocurrency trades with this specific user. The ini-
tial balance in this escrow is 0 LTC owned by the user,
and 500 LTC owned by the exchange. Once the escrow
is closed, the balance of the coins owned by the Alice
are released and transferred to Alice’s wallet, and the
balance of the coins owned by the exchange are released
and transferred to the exchange’s wallet.

Pairing. Alice can execute multiple fast off-blockchain
trades against any (user escrow, exchange escrow) pair.
If Alice has multiple open user escrows with a given
exchange, she can pair them with any of her open ex-
change escrows with that exchange. In the example of
Figure 1, initially pairs her 5 BTC user escrow and her
500 LTC exchange escrow, allowing her to sell up to 5
BTC and buy up to 500 LTC.

Escrow expiry times. Escrows come with an expiry
time that protect each party against a malicious coun-
terparty. As long as the exchange is not compromised,
the user can close her escrows early, before they expire.
Escrow expiry times can vary, but must be longer than
the time it takes to reliably confirm a transaction on
blockchain. Thus, expiry times are least several hours
after the escrow has been opened.

Escrow smart contracts. The Arwen escrow is
a timelocked two-of-two multisig smart contract that
stipulates the following:

“coin may be released from escrow via a trans-
action that is signed by both the user’s ephemeral
key and the exchange’s ephemeral key, OR
after time tw , the party that funded that es-
crow can unilaterally withdraw coins from
the escrow by signing a transaction using
their ephemeral key.”

Each ephemeral key is chosen and used for this specific
escrow only. This way, even if a trading key is compro-
mised, there is no risk to the coins that remain in the
user wallet or the exchange wallet. The user’s ephemeral
trading key is stored in the Arwen Daemon on the user’s
local machine.

5



Request: Sell 1 BTC for some LTC?

Quote: 1 BTC for 100 LTC.

Confirmed!

Order! 1 BTC for 100 LTC.

CENTRALIZED EXCHANGETRADER

First trade
(off blockchain!)

User Escrow
User:                 5 BTC  
Exchange:      0 BTC

Exchange Escrow
User:                   0 LTC  
Exchange:   500 LTC

On-blockchain 
escrow 

transactions

BTC CashOut
User:                 2 BTC  
Exchange:      3 BTC

LTC CashOut:
User:              300  LTC  
Exchange:   200 LTC

These transactions 
are  posted to the 

blockchain only 
when the escrows 

are closed 

Request: Sell 2 BTC for some LTC?

Quote: 2 BTC for 200 LTC.

Confirmed!

Order! 2 BTC for 200 LTC.
Second trade

(off blockchain!)

Figure 1: Arwen Trading Protocol for a two RFQ trades between the user and exchange.

Bitcoin script implementation. When Arwen es-
crows lock coins on blockchains that support the Bitcoin
Script language (e.g., BTC, BCH, LTC, ZEC, etc.), the
Arwen escrow smart contract operates is quite simple,
comprising only 16 opcodes. (Bitcoin Script is a highly
restricted language, reminiscent of Assembly language.)

User escrows and exchange escrows are transactions
confirmed on their native blockchain. The reader might
therefore wonder if a third party can inform their own
trading strategies by scanning the blockchain to find Ar-
wen escrows. Fortunately, with Bitcoin-fork blockchains,
a third party can only observe that a certain amount
of coins has been transferred into a smart contract ad-
dress; the amount of coins is visible on the blockchain,
but the details of the smart contract are completely un-
known to the third party. This follows because opening
an escrow amounts to funding a P2SH-type address on
a “Bitcoin-fork” blockchain. A P2SH address is just a
cryptographic hash of the smart contract itself. No de-
tails of the smart contract are apparent from this hash,
other than the fact that it is a smart contract. More-
over, the P2SH-type address is commonly used by other
systems, not just by the Arwen Trading Protocol.

Ethereum smart contract implementation. The
Ethereum and ERC-20 implementation of Arwen uses
an escrow smart contract that mimics the UTXO trans-
action paradigm that is used on Bitcoin. Once the
smart contract is funded, it enters the OPEN state,
and remains in the OPEN state until either a trans-
action is posted that is (1) doubly-signed by the users’s
ephemeral key and the exchange’s ephemeral key (this
is 2-of-2 multisig condition of the Arwen escrow), or (2)
the escrow expires after time tw , and the party that
funded the escrow posts a signed message that unlocks
the coins in the escrows (this is the timelock condition
of the Arwen escrow). See the description in Section 6.

3.3 Off-blockchain trading via atomic swaps.

Arwen supports several off-blockchain trading instru-
ments, backed by the user escrow and exchange escrows
contracts. These trading instruments and their accom-
panying cryptographic protocols are described in Sec-
tions 5,6,9. Arwen trades are fast, because they hap-
pen off-blockchain. To trade, the user’s Arwen Daemon
and the exchange send cryptographic messages between
themselves. Because no other party can see these mes-
sages, the trade is protected from front-running, grief-
ing, and other strategic manipulations.

Each trade is an atomic swap, and cannot be reversed
once it executes. If a trade successfully executes, it re-
sults in a pair of off-blockchain transactions that reflect
the balance of coins in the escrows after the trade. These
transactions protect the user and the exchange in case
the other party becomes uncooperative (i.e., malicious
or unresponsive), by allowing each party to unilaterally
close the escrows without the help of the other party.

3.4 Closing on-blockchain escrows.
Once an escrow is closed, the balance of coins owned

by the user is released into the user’s wallet, and the bal-
ance of coins owned by exchange is released into the ex-
change’s wallet. For instance, consider Figure 1, where
(1) the user escrow was initially funded with 5 BTC,
and (2) the exchange escrow was initially funded with
500 LTC, (3) Alice performed two RFQ trades selling 3
BTC in order to buy 300 LTC, and then (4) decided to
close both the user escrow and exchange escrow. When
the user escrow is closed, 2 BTC will be transferred into
Alice’s wallet, and 3 BTC will be transferred into the
exchange’s wallet. When the exchange escrow closes,
300 LTC will be transferred to the user’s wallet, and
200 LTC will be transferred to the exchange’s wallet.

Cooperative close. In typical situations, where
neither the exchange nor the user is malicious or com-
promised, then the user escrow and the exchange escrow
can be closed at any time, even before they expire. Each
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escrow is closed via a cooperative exchange of messages
between the user and exchange. The output of this co-
operation is a single cashout transaction, posted to the
blockchain, that reflects the balance of the escrow and
is doubly-signed by (1) the user’s trading key and (2)
the exchange’s trade key.

Uncooperative close. The Arwen Trading Proto-
col is secure atomic swap protocol because it allows the
user to unilaterally recover from the two unlikely situa-
tions which may occur if the exchange is compromised
or unresponsive:

The exchange refuse to close an open escrow. In this
case, the user can unilaterally close the escrow.

The exchange aborts a trade. An escrow is frozen
whenever an exchange improperly aborts a trade against
that escrow. A frozen escrow cannot be used for trad-
ing and must be closed. If the exchange refuses to co-
operatively close a frozen escrow, Alice can unilaterally
recover coins from the frozen escrow by connecting her
Arwen Daemon to the Internet during a specific coin-
recovery time period. The Arwen Daemon notifies the
user about the coin recovery time period at the moment
the Arwen Daemon detects that the exchange improp-
erly aborted a trade.

Similarly, Arwen allows the exchange to unilaterally
close escrows when the user is malicious or unrespon-
sive.These unilateral recovery procedures are the main
technical contribution of the Arwen protocols, and are
specific to each of Arwen’s trading instruments. See
e.g., Sections 5.5,5.6,8.48.5 for the procedures used in
Arwen’s unidirectional RFQ trading protocol.

3.5 Arwen’s escrow fee mechanism.
When an exchange funds an exchange escrow for a

specific user Alice (e.g., the 500 LTC exchange escrow in
Figure 1), the exchange is locking coins in an escrow that
can only be used by Alice. These coins can come out of
the exchange’s own inventory. Alternatively, they could
be coins deposited by custodial users that the exchange
uses to fund escrows, in exchange for earning interest
on those deposits.

For this reason, when Alice requests an exchange es-
crow, she first pays an escrow fee to compensate the
exchange for locking up its funds. Arwen’s escrow fees
are an in-band mechanism that avoids the introduction
of out-of-band payments or of a superfluous fee token.

The escrow fee mechanism. The escrow fee is pro-
portional to the amount of coin locked in the exchange
escrow, and to the expiry time of the exchange escrow.
Alice pays the escrow fee upfront, before she opens the
exchange escrow. Alice receives a rebate of a portion of
the escrow fee if she closes the exchange escrow early,
before it expires.

Alice pays the upfront escrow fee via a fast off-blockchain
transfer out of the coins locked in one of her user es-
crows. Alice receives the rebate out of the exchange
escrow, once that exchange escrow is closed.

Paying escrow fees. This is best illustrated with an
example. Consider the situation in Figure 1, and sup-
pose that Alice has an open user escrow with a balance

of 5 BTC owned by Alice. Alice then asks the exchange
to open a 500 LTC exchange escrow for her that ex-
pires two days later, and indicates that she can pay the
escrow fee out of her BTC user escrow.

Suppose the escrow fee for the requested exchange
escrow is 1 LTC/day and Alice decides to pay the up-
front escrow fee using her BTC user escrow. First, the
exchange performs a currency conversion of the escrow
fee, converting it from 2 LTC into 0.02 BTC. Next, the
exchange quotes an escrow fee of 0.02 BTC to Alice. If
Alice accepts this fee, Alice sends the exchange a 0.02
BTC off-blockchain payment from her user escrow that
alters the balance in the user escrow so that the ex-
change owns 0.02 additional BTC and Alice owns 4.98
BTC. Once the exchange receives this payment, the ex-
change funds an exchange escrow for Alice for 500 LTC.

Escrow fee rebate. Now suppose that Alice has
made trades that alter the balance in the exchange es-
crow so that 300 LTC is owned by Alice and 200 LTC is
owned by the exchange. Alice then decides to closes her
exchange escrow one day early, so she is entitled to a
escrow-fee rebate of 1 LTC. Alice is paid the rebate out
of the closed exchange escrow. Thus, the exchange es-
crow is closed with a balance of 301 LTC sent to Alice’s
wallet and 199 LTC sent to the exchange’s wallet.

4. SECURITY MODEL.
Arwen assumes that the exchange is almost always on-

line, while the user is usually not online. Atomic swap
security for users of Arwen follows from five assump-
tions.

1. The traded coins’ native blockchain is secure. That
is, when trading bitcoins we assume that the Bit-
coin blockchain is secure.

2. The user’s Arwen Daemon has not been compro-
mised. (Note that the Arwen Daemon is open-
source and therefore can be audited.)

3. The user correctly deposits coins in her user es-
crow. (This is exact same assumption on user be-
havior that is made whenever a user deposits coins
at a cryptocurrency exchange.)

4. The user correctly informs the Arwen Daemon of
the wallet addresses where she wants her coins
transferred to upon closing each escrow. (This
is exact same assumption on user behavior that
is made whenever a user withdraws coins from a
cryptocurrency exchange.)

5. The user remembers to come online in order to re-
cover coins from frozen escrows during their coin-
recovery time period, and to close escrows in a
“timely manner”. Each Arwen protocol has a spe-
cific definition of what it means to close escrows
in “timely manner”. (The users coins are at risk
only if the exchange is compromised or malicious,
and the user forgets to close escrows in a timely
manner or to recover coins from frozen escrows.)
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These assumptions only related to the blockchain (as-
sumption 1), the user’s computing environment (assump-
tion 2) and the user’s behavior (assumption 3-5). Secu-
rity for the user makes no assumptions about the se-
curity or correctness of the cryptocurrency exchange or
any other party.

Atomic-swap security for the exchange analogously
follows from five analogous assumptions, and analogously
makes no assumptions about the security or correctness
of the user or any other party.

5. UNIDIRECTIONAL RFQS
The following protocol is unidirectional [32] because

it only allows Alice to sell coins from her user escrow,
and buy coins from her exchange escrow. Arwen’s more
complex bidirectional RFQ protocol is described in Sec-
tion 8. This unidirectional protocol is for“Bitcoin-derived”
blockchains, including those without SegWit, and thus
withstands transaction malleability attacks for the rea-
sons explained in Section 7. Section 6 explains how to
port this protocol to Ethereum and ERC-20 tokens.

Each off-blockchain RFQ trade is backed by a user
escrow (with expiry time twA) and an exchange escrow
(with expiry time twB). The protocol for opening these
escrows is in Section 3.2. Both escrows must be open
during a trade (rather than expired, frozen, or closed).

Each new trade generates a pair of timelocked puz-
zle transactions for puzzle y, along with correspond-
ing solution x where x is chosen by the exchange and
y = H(x). One puzzle transaction spends the output
of the user escrow and has timelock τA, and the other
spends the output of the exchange escrow and has time-
lock τB. Each pair of puzzle transactions reflect the
new balance of coins in the escrows after the trade, and
“overwrites” the pair of transactions generated by the
previous trade. The puzzle transactions and solution x
and allow each party to unilaterally close escrows with
the correct balance of coins, even if the other party be-
comes malicious.

5.1 Security assumptions.
Timelocks. The security of this protocol follows be-
cause we set the timelocks to be

τA = twA τB = max(twB, τA + 2%) (1)

where % is the time required for transaction be reliably
confirmed on the blockchain. Importantly, notice that
there is no relationship between the escrow expiry times
(twA, twB), which means we can pair any user escrow
and exchange escrow, regardless of their expiry time.

Closing escrows in a timely manner. To with-
stand attacks by a compromised or malicious exchange:

The user must close her exchange escrow be-
fore it expires at time twB.

If the user forgets to do this, an honest exchange will
close the escrow on the user’s behalf, but a malicious
exchange may be able to steal coins from the escrow.
This requirement is for exchange escrows only; there is
no requirement that the user close her user escrows in

a timely manner. Similarly, to withstand attacks by a
compromised or malicious user:

The exchange must close its user escrow be-
fore it expires at time twA.

Finally, the time period in which the user can unilater-
ally recover coins from frozen escrows is (twA, τB).

5.2 Off-blockchain RFQ trades.
This exposition below follows Figure 1. We suppose

that the user Alice wants to do a trade, selling 2 bitcoins
for 200 litecoins. We also assume that, in all previous
successfully-completed trades, Alice has sold at total 1
BTC from the user escrow and 100 LTC from the ex-
change escrow that are backing the current trade. Each
RFQ is an off-blockchain four-message protocol com-
prising the following four messages.

Request. Alice requests a quote to sell 2 BTC in
order to buy LTC.

Quote. The exchange responds with the quote—“2
BTC can be sold for 200 LTC, open for time δ”. The
exchange has now committed to executing the trade,
should Alice choose to place an order before the quote
expires at time δ. To align incentives, the quote reflects
the current market price at the exchange, plus an addi-
tional spread that compensates the exchange for price
fluctuations between the moment the quote is provided,
and the moment the trade is executed.

To commit to the quote, the exchange chooses a se-
cret solution x and computes a puzzle y = H(x). The
exchange sends Alice the following Litecoin puzzle trans-
action for the Litecoin blockchain. The puzzle transac-
tion (1) is signed by the exchange’s ephemeral key, (2)
spends the output of the exchange escrow, and (3) re-
flects the current balance in the LTC exchange escrow,
except that 200 LTC is locked in an HTLC smart con-
tract stipulating that

”The coins may only be unlocked via a trans-
action that contains the solution to puzzle y
and is signed by the user’s ephemeral key,
OR
after time τB, the exchange can unilaterally
unlock coins from the escrow by signing a
transaction using its ephemeral key.”

In other words, the puzzle transaction sends 100 LTC
to Alice’s wallet, locks 200 LTC in an HTLC smart con-
tract under puzzle y, and sends the remaining 200 LTC
to the exchange.

(Notice that Alice could sign this puzzle transaction
and post it to the Litecoin blockchain. This would re-
lease all coins locked in the user escrow, except those 200
LTC locked under the puzzle y. However, Alice does not
sign or post anything to the Litecoin blockchain until
she is ready to close her exchange escrow.)

Order. If the user decides not to place the order,
then the escrows remain open and can be used for other
trades. (This follows because only the exchange knows
the secret solution x. Without x, the Litecoin puzzle
transaction is useless to Alice. Nevertheless, if Alice
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does decide to post the puzzle solution to the Lite-
coin blockchain, the exchange can reclaim the 200 LTC
locked under the puzzle after its timelock expires at τB.)

To place an order, Alice signs and sends the exchange
a new Bitcoin puzzle transaction using the same puzzle
y chosen by the exchange. The puzzle transaction (1) is
signed by Alice’s ephemeral trading key, (2) spends the
output of the user escrow, and (3) reflects the current
balance in the user escrow, except that 2 BTC is locked
in an HTLC smart contract stipulating that

”The coins may only be withdrawn via a
transaction that contains the solution to puz-
zle y and is signed by the exchange’s ephemeral
key, OR
after time τA, the user can unilaterally with-
draw coins from the escrow by signing a trans-
action using its ephemeral key.”

At this point in the protocol, Alice cannot abort the
order, because the exchange can now unilaterally decide
whether or not the trade executes. (This follows because
the exchange can use this puzzle transaction, and the
solution x to unilaterally close the user escrow as if this
trade was executed.)

Execute. If the user placed the order before time
δ, then the exchange is expected to execute the trade
by sending the solution x to the user. This executes
the atomic swap, because now both the user and the
exchange hold transactions that allow them to unilater-
ally close their escrows, reflecting the new balance after
the trade. (Specifically, the user can unilaterally close
the exchange escrow, and the exchange can unilaterally
close the user escrow.) However, in most situations the
user will prefer to keep trading against her open es-
crows. In this case, no transactions are posted to the
blockchain, and the user escrow and the exchange es-
crows remain open.

What if the exchange does not properly execute the
trade by releasing x? In this case, Alice will freeze
the user escrow and exchange escrow that backed the
aborted trade and launch a procedure for recovering her
coins, as described in Section 5.6.

5.3 The magic of unidirectionality.
The security of our protocol follows, in part, from

an observation first made by Spilman [32]. This is a
unidirectional protocol, which means that the user can
only use the exchange escrow to buy coins from the ex-
change. Thus, each subsequent trade changes the bal-
ance of coins in the exchange escrow such that the user
holds more litecoins and the exchange holds less lite-
coins. For this reason, the user will always prefer to post
the transactions resulting from the most recent trade to
the Litecoin blockchain. This is why the Litecoin trans-
actions resulting from a new trade will “overwrite” the
Litecoin transactions resulting from the previous trade.

In other words, the user is incentivized to close the
exchange escrow before it expires using the transactions
resulting from the most recent trade. If the user goes
rogue and closes the exchange escrow using transactions
from a prior trade, she only hurts herself (because she

will have fewer coins), not the exchange (because the
exchange will have more coins)!

Similar reasoning explains why the exchange prefers
to close the user escrow before it expires using the trans-
actions from the most recent trade.

Paying escrow fees. The magic of unidirectionality
also makes it easy for the Alice to pay escrow fees out of
her user escrow. Suppose that, after the second trade in
Figure 1, Alice wishes to pay an 0.02 BTC escrow fee in
order to open a new exchange escrow. To do this, Alice
signs and sends the exchange a cashout transaction that
reflects the current balance of the user escrow, with an
additional 0.02 BTC allocated to the exchange. Specif-
ically, the cashout transaction (1) spends the output of
the user escrow, (2) sends 3.02 BTC to the exchange’s
wallet, and 1.98 BTC to the user’s wallet. The same
unidirectional argument means that the exchange is in-
centivized to have this cashout transaction “overwrite”
the puzzle transaction received from the previous trade.
This cashout transaction could then be signed by the
exchange and posted to the blockchain if the exchange
needs to unilaterally close the user escrow.

5.4 Closing escrows.
Cooperative close. If neither the user nor the ex-
change is unresponsive or malicious, escrows are closed
prior to their expiry using the cooperative close proce-
dure outlined in Section 3.4. Specifically, the user sends
the exchange a signed cashout transaction reflecting the
final balance in the escrow. The exchange then signs
that transaction and posts it to the blockchain. For ex-
ample, to cooperatively close the user escrow after the
trade described above, the cashout transaction would
(1) spend the output of the user escrow, (2) send 3 BTC
to the exchange’s wallet, and 2 BTC to the user’s wallet,
and (3) be signed by both the user and the exchange.

Incentives for a cooperative close. Coopera-
tively closing an escrow is in the interest of both parties,
because it allows them to reduce mining fees by clos-
ing their escrows using a one transaction, rather than
two (i.e., the puzzle transaction and a solve transac-
tion that contain the solution x to puzzle y). Moreover,
because the puzzle transaction is generated in advance,
it must include a highly conservative blockchain min-
ing fee. This is necessary to cope with unpredictable
fluctuations in mining fees between the time the puz-
zle transaction was created during the RFQ trade, and
the time it might get posted to the blockchain to uni-
laterally close the escrow. A cooperative close of the
exchange escrow also allows the user to earn a rebate
on her escrow fees, as described in Section 3.5.

Unilateral close. However, if one of the parties
refuses (or forgets) to engage in a cooperative close, our
protocol ensures that their counterparty can unilater-
ally close the escrows and obtain at least those coins
they rightfully hold according to the final balance in
the escrow. (In fact, there are cases where a unilat-
eral close allows the counterparty to obtain additional
coins beyond those coins that they rightfully hold ac-
cording to the final balance in the escrow.) Each party’s
procedure for closing an open escrows when the coun-
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Figure 2: Diagram of transactions pointing to the user escrow for the unidirectional RFQ protocol
of Section 5. Per Figure 1, we suppose that the user has already received 1 BTC and is engaging
in a trade for an additional 2 BTC. Transactions in color are only posted to the blockchain if a
party becomes uncooperative. The ⊕ symbol is an XOR: only one of the transactions from the ⊕
can be posted to the blockchain. The lock symbol represents a signature. The transactions shown
in green and blue are posted by the exchange to unilaterally close the escrow if the user becomes
uncooperative, or forgets to close the escrow before time twA. The transaction in purple is used by
the user to unilaterally close the user escrow after it expires at time twA; here we depict the case
where all trades properly complete but the exchange did not cooperate to close the escrow, so the
user benevolently transfers 2 BTC to the exchange’s wallet, rather than “stealing” these BTC for
herself. The transaction in magenta is used by the user to unilaterally release coins locked in puzzle
transaction, after the puzzle expiry time of τA; this transaction is only used when the exchange posts
a puzzle transaction but fails to post the corresponding solve transaction.

exchange escrow
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Figure 3: Diagram of transactions pointing to the exchange escrow for the unidirectional RFQ protocol
of Section 5. Per Figure 1, we suppose that the user has already received 100 LTC and is engaging
in a trade for an additional 200 LTC. Transactions in color are only posted to the blockchain if a
party becomes uncooperative. The transactions shown in green and blue are posted by the user to
unilaterally close the escrow if the exchange becomes uncooperative. The transaction in purple is
used by the exchange to unilaterally close the exchange escrow after it expires at time twB; here we
depict the case where all trades properly complete but the user forgets to close the exchange escrow
before it expired, so the exchange benevolently transfers 200 LTC to the user’s wallet, rather than
“stealing” these LTC for itself. The transaction in magenta is used by the exchange to unilaterally
release coins locked in puzzle transaction, after the puzzle expiry time of τB; this transaction is only
used when the user posts a puzzle transaction but fails to post the corresponding solve transaction.
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terparty is malicious or uncooperative is in Section 5.5.
The user’s procedure for recovering coins from a frozen
escrow is in Section 5.6.)

5.5 Unilaterally closing an open escrow
What happens if the user and exchange fail to co-

operatively close an escrow before it expires? Here we
consider only the case where the escrow is open, i.e.,
where all trades against that escrow have properly com-
pleted. Recovery from an escrow that is frozen due to
an aborted trade is described in Section 5.6. There are
four relevant cases.

5.5.1 Exchange refuses to close exchange escrow.
In this case, Alice’s Arwen Daemon can unilaterally

close the exchange escrow before it expires at time twB,
by signing and posting the puzzle transaction and then
signing and posting the solve transaction that resulted
from the latest trade. (See Figure 3.) This releases coins
to Alice’s wallet and the exchange’s wallet, according to
the balance in the escrow after the last completed trade.

Alice’s coins are safe if she closes the exchange
escrow before time twB. This follows because only
Alice can close the exchange escrow before twB, which
protects her from race conditions with a malicious ex-
change or any other party. To see why, recall from
Section 3.2 that, to close the exchange escrow before
it expires, we require a transaction doubly-signed by
both the user and the exchange. The RFQ protocol
above ensures that only Alice has such a transaction—
the Quote message provides the user with a puzzle trans-
action, signed by the exchange, that spends the output
of the exchange escrow. Alice can unilaterally sign this
puzzle transaction to create the required doubly-signed
transaction, and unilaterally post this transaction to the
Litecoin blockchain. Meanwhile, the exchange does not
the ability to create such a doubly-signed transaction,
because Alice never sends the exchange a signed trans-
action that spends the output of the exchange escrow.

Once the puzzle transaction is confirmed by the blockchain,
Alice can use the corresponding solution x to sign and
post a solve transaction to he blockchain, releasing the
coins locked in the HTLC smart contract in the puzzle
transaction to Alice’s wallet. Also, Alice is protected
from race conditions because only Alice can spend the
coins locked in the HTLC before twB. This follows be-
cause equation (1) is such that the HTLC’s timelock τB
expires after time twB .

5.5.2 User forgets to close exchange escrow.
What happens if Alice forgets to close her exchange

escrow before it expires? Alice’s coins are at risk only
if the exchange becomes malicious.

This follows because an exchange can unilaterally close
an exchange escrow after it expires at time twB using a
refund transaction (see Figure 3). The refund transac-
tion (1) is signed by the exchange, and (2) spends the
output of the exchange escrows. An honest exchange
will (3) form the refund transaction so that it releases
coins to Alice’s wallet and the exchange’s wallet accord-
ing to the final balance of in the escrow. However, a

malicious exchange could instead have the refund trans-
action release all coins to the exchange’s wallet; this is
why we say the user’s coin are risk if she forgets to close
her exchange escrow before it expires.

Meanwhile, an malicious user Alice cannot steal the
exchange’s coin even if the exchange decides to close the
exchange escrow significantly after time twB. This fol-
lows because even if Alice decides to race the exchange’s
refund transaction, Alice can only attempt to close the
escrow with a puzzle transaction that either (1) reflects
the final balance of in the escrow (i.e., at the same bal-
ance at which the honest exchange is attempting to close
the user escrow) OR (2) reflects the balance of in the
escrow after any earlier completed trade (i.e., a balance
where the exchange holds more coins than it does in the
final balance of the escrow, which is worse for Alice and
better for the exchange!)

5.5.3 User forgets to close user escrow.
Suppose the user forgets to cooperatively close a user

escrow before it expires at time twA. Here, the ex-
change must unilaterally close the user escrow before
time twA. To do this, the exchange signs and posts the
puzzle transaction, and then signs and posts the solve
transaction, both of which resulted from the latest com-
pleted trade (see Figure 2). (If the final off-blockchain
transfer against this escrow was due to Alice paying an
escrow fee, then the exchange would instead close the
escrow using the cashout transaction used to pay the
escrow fee; see Section 5.3.) This releases coins to Al-
ice’s wallet and the exchange’s wallet, according to the
final balance in the escrow. The exchange must do this
before time twA in order to avoid race conditions with
a malicious Alice. This follows from reasons analogous
to those given in Section 5.5.1.

5.5.4 Exchange refuses to close user escrow.
If the exchange refuses to cooperatively close a user

escrow, the user’s coins are not at risk. The user just
needs to wait until the user escrow expires, at which
point her Arwen Daemon will automatically and unilat-
erally close the user escrow using a refund transaction
(see Figure 2). This follows because the user escrow
smart contract allows the user to unilaterally unlock the
coins in the user escrow after time twA. Alice is in no
rush to unilaterally close this user escrow—her Arwen
Daemon can do this at any time after the user escrow
expires at time twA. This follows for reasons analogous
to those in Section 5.5.2.

5.6 Recovering coins from frozen escrows.
Suppose that during the last trade, the user placed

an order against a quote provided by the exchange, but
the exchange failed to properly execute the order by
releasing the preimage x. This is an unlikely case, be-
cause the exchange is supposed to execute any orders
placed against any of its quotes. This last trade is con-
sidered to be improperly aborted. Whenever the Arwen
Daemon detects an improperly aborted trade, it pro-
tects the user’s coins by freezing the user escrow and
exchange escrow that backed this trade. Frozen escrows
cannot be used for trading.
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Next, the user’s Arwen Daemon immediately asks the
exchange to cooperatively close the user escrow (on the
Bitcoin blockchain) and exchange escrow (on the Lite-
coin blockchain) that backed this trade, under the as-
sumption that the balance in these escrows is as it was
prior to the final, improperly-aborted trade. If the ex-
change agrees to close both escrows, then no further
action is required from the user.

However, suppose that the exchange refuses to close
the frozen exchange escrow. In this case, the user’s Ar-
wen Daemon will immediately and unilaterally close the
exchange escrow by posting the puzzle transaction from
the aborted trade. Doing this, however, means that the
coins in the exchange escrow, that were involved the
aborted trade, are still locked in the puzzle transaction’s
HTLC smart contract until time τB. We call these coins
the outstanding coins. The outstanding coins rightfully
belong to Alice if the exchange sneakily executed the
aborted trade on the Bitcoin blockchain without telling
Alice; otherwise, the outstanding coins rightfully belong
to the exchange. The remainder of this procedure is al-
lows Alice to claim the outstanding coins whenever they
are rightfully hers.

What happens next depends on whether the exchange
also agreed to cooperatively close the user escrow. If so,
no further action is required from Alice. This follows
because the user escrow was closed according to the
balance before to the aborted trade, so the outstanding
coins rightfully belong to the exchange. The exchange
can unilaterally claim the outstanding coins once the
timelock τB expires by posting a puzzle-refund transac-
tion, signed by the exchange, that sends the outstanding
coins to the exchange’s wallet.

Otherwise, the exchange refused to cooperatively close
the user escrow. Alice must come online during time
window (twA, τB) to allow her Arwen Daemon to claim
the outstanding coins. Thus, the Arwen Daemon scans
the Bitcoin blockchain looking for transactions that spend
the user escrow. There are several cases:

• User escrow closed using a successful trade. The
exchange closed the user escrow on the Bitcoin
blockchain via a puzzle transaction for any trade
prior to the aborted trade. No further action is
needed from the Arwen Daemon. This follows be-
cause the outstanding coins rightfully belong to
the exchange, and the exchange can unilaterally
claim them once the timelock τB expires via a
puzzle-refund transaction.

• User escrow closed using the aborted trade. The
exchange closed the user escrow on the Bitcoin
blockchain via a puzzle transaction for the aborted
trade, as well as its corresponding solve transac-
tion. The Arwen Daemon learns the solution x
from solve transaction on the Bitcoin blockchain.
The Arwen Daemon then uses x to form and sign
the solve transaction for the Litecoin blockchain,
claiming the outstanding coins for Alice. Impor-
tantly, the Arwen Daemon must complete this ac-
tion before τB, because the outstanding coins can
be unilaterally claimed by the exchange after τB,
which puts Alice’s coins at risk.

• User escrow partially closed. The exchange posted
the puzzle transaction for any trade made against
this user escrow, but the coin locked in this puzzle
transaction on the Bitcoin blockchain are unspent.
In this weird case, the exchange has not executed
the aborted trade without telling the user, and so
the user will not be able to claim the outstanding
coins on the Litecoin blockchain. Nevertheless, the
Arwen Daemon must still recover the coins locked
in the puzzle output from the user escrow on the
Bitcoin blockchain and send them back to the Al-
ice’s wallet. The user can unilaterally do this after
the timelock on puzzle transaction expires at time
τA, by posting a puzzle-refund transaction to the
Bitcoin blockchain that sends locked coinsback to
Alice’s wallet. Note that τA = twA for all trades
made against this user escrow, which means that
Arwen Daemon can take this action during the
time window (twA, τB).

• User escrow not closed. Here the output of the
user escrow is unspent. This again means that ex-
change has not executed the aborted trade, so the
user cannot claim the outstanding coins. How-
ever, the Arwen Daemon must still recover the
coins locked in the user escrow. The Arwen Dae-
mon will post the refund transaction that releases
coins to Alice’s wallet and the exchange’s wallet,
according to the balance in the escrow prior to
the aborted trade. The can be done anytime af-
ter time twA when the user escrow expires, which
means that Arwen Daemon can take this action
during the time window (twA, τB).

Once this process is complete, both the user escrow and
the exchange escrow are closed.

6. ETHEREUM UNIDIRECTIONAL RFQS
We now describe how to port the unidirectional RFQ

protocol of Section 5 to Ethereum and ERC-20 tokens [36].
We use an escrow smart contract that mimics the UTXO
transaction paradigm that is used on Bitcoin.

Ethereum Smart contract. Each user escrow and
exchange escrow is a smart contract that can be in one
of three states: (OPEN, PUZZLE, CLOSED). Coins are
locked when the escrow is OPEN, and released when the
escrow is CLOSED. The PUZZLE state is for trading.

The user escrow can move from the OPEN state to
the CLOSED state via a:

1. refund transaction which is signed by the user and
posted to the blockchain after time twA, (thus ful-
filling the timelock condition of the Arwen escrow)

2. cashout transaction which is doubly-signed by the
user and by the exchange, (thus fulfilling the 2-of-2
multisig condition of the Arwen escrow)

Meanwhile, the escrow smart contract moves from the
OPEN state to the PUZZLE state when a puzzle trans-
action, that calls a method in the escrow smart contract,
is confirmed on the Ethereum blockchain. The puzzle
transaction is doubly-signed by the user’s ephemeral key
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and the exchange’s ephemeral key (thus fulfilling the 2-
of-2 multisig condition of the Arwen escrow) and con-
tains a puzzle y and an puzzle timelock τ (which are
used for atomic swap trading). Then, a user escrow can
move from the PUZZLE state to the CLOSED state via:

3. solve transaction which contains solution x and is
signed by the exchange

4. puzzle-refund transaction which is signed by the
user and posted to the blockchain after time τA

The exchange escrow can be analogously arrive in the
CLOSED state in four ways (i.e., via solve, puzzle-
refund, refund, or cashout transaction).

The RFQ protocol is essentially identical to that of
Section 5. The four ways that the user escrow can be
closed are identical to the four ways that an escrow can
be closed in the protocol of Section 5 (see also Figure 2).
As in Section 5, the cashout transaction is used for co-
operatively closing an escrow, while the puzzle, solve,
refund, and puzzle-refund transactions are used to uni-
laterally close escrows per Section 5.5, 5.6.

ERC-20 smart contract. Our ERC-20 implemen-
tation of Arwen is identical to the Ethereum implemen-
tation, with the following key modification.

The ERC-20 implementation of the Arwen escrow
smart contract includes an additional state, UNFUNDED,
which is used to lock ERC-20 tokens in Arwen escrows.
(Recall that an ERC-20 token is created via the im-
plementation of a single standard ERC-20 smart con-
tract on the Ethereum blockchain, where the state of
the ERC-20 contract tracks the number of tokens held
by each account holder of the token. Thus, the Arwen
escrow smart contract must alter the state of the ERC-
20 smart contract in order to lock coins in escrow.)

To see how this is done, we describe the three-step
process used by Alice to lock 5 tokens in a user es-
crow. First, Alice posts the user escrow smart contract
to the Ethereum blockchain; at this point, the escrow
is in the UNFUNDED state. Second, Alice call the ap-
prove method in the token’s ERC-20 smart contract, in-
dicating that she approves the transfer of 5 tokens from
Alice’s address to the user-escrow smart contract’s ad-
dress. Third, Alice calls the fund-escrows method in
the user escrow smart contract, which interacts with
the ERC-20 smart contract to transfer the required 5
token into the user escrow smart contract. Similarly,
when the user escrow is CLOSED, it interacts with the
ERC-20 smart contract to release the balance of tokens
from the user-escrow smart contract address into both
Alice’s address and the exchange’s address.

7. TRANSACTION MALLEABILITY
Arwen withstands transaction malleability attacks on

“Bitcoin-derived‘’ blockchain that do not have SegWit.
We now explain the transaction malleability problem,
discuss why it affects layer-two blockchain protocols,
and explain how Arwen avoids it. Withstanding trans-
action malleability allows Arwen to support more Bitcoin-
derived blockchains.

Transaction malleability. Consider a transac-
tion T2 that spends the output of a transaction T1. T2

therefore contains a pointer to T1, called the TXID.
This TXID is malleable: the TXID can be changed
(“mauled”) by anyone, without affecting the validity or
contents of transaction T1.

We explain why as follows. The TXID on T1 is the
hash of (essentially) the entire T1, including any sig-
natures on T1. Most “Bitcoin derived” blockchains use
elliptic curve digital signatures, which are not determin-
istic. (That is, a random value r is used to compute the
signature σ on message m.) This means that a party
that holds the secret signing key can easily produce mul-
tiple valid signatures σ, σ′, . . . on a single message m.
Worse yet, even a party that does not know the secret
signing key can take a valid signature σ on a message
m, and maul σ to obtain a different valid signature σ′

on m. Now, because TXID is the hash of (essentially)
the entire T1, mauling the signatures on T1 results in a
completely different TXID for T1. Additionally, some
parts of the transaction that are included in the TXID
hash are not covered by the signature on the transac-
tion, which creates an additional malleability problem.

SegWit. With SegWit [39], the TXID hash is not
computed over the signatures on the transaction. This
solves the malleability problem, because now mauling
the signature has no effect on the TXID. SegWit also re-
moves other malleability vectors (i.e., parts of the trans-
action that are not covered by the signature).

Impact on layer-two protocols. If T1 is already
reliably confirmed on the blockchain, the security of the
blockchain ensures that no one call maul the signatures
on T1, and transaction malleability is irrelevant.

Now consider a layer-two protocol where Alice holds
T1, an off-blockchain transaction that spends an on-
blockchain transaction T0. Next suppose that Alice
transfers coins to Bob by sending Bob an off-blockchain
transaction T2 that is signed by Alice and contains a
pointer to T1. Transaction malleability means that Al-
ice’s signature on T2 is completely useless. This fol-
lows because Alice can break the TXID pointing from
T2 to T1 by mauling the signatures on T1; this means
that T2 becomes an invalid transaction but T1 remains
valid. Thus, Bob could not use T2 to claim coins from
T0. (This is exact reason why the Lightning Network,
as currently designed, only works with blockchains that
support SegWit, see Appendix A of [25].)

How Arwen avoids this problem. To avoid this
problem, Arwen ensures that parties never need to send
each other signatures on off-blockchain transactions that
point to other off-blockchain transactions. Instead, par-
ties only send each other signatures on off-blockchain
transactions that point directly to the Arwen on-blockchain
escrows. This further implies that if an off-blockchain
transaction comes with a smart contract (e.g., like the
HTLC smart contract on the off-blockchain puzzle trans-
action), then each clause on that smart contract must
require the signature of only one party. If a single
clause required the signature of more than one party,
then parties would need to send each other signatures
on off-blockchain transactions that point to other off-
blockchain transactions, which is vulnerable to transac-
tion malleability. The reader is invited to check that
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Arwen is robust to transaction malleability, by checking
that each clause on a smart-contract in an off-blockchain
transaction only requires the signature of a single party;
see Figures 2,3,4.

This is also why we can not use relative timelocks i.e.,
CheckSequenceVerify [9] in Arwen. CheckSequenceVer-
ify (which is used extensively in Lightning) provides a
timelock which is relative to the time another transac-
tion is confirmed on-blockchain. CheckSequenceVerify
is therefore not safe to use on blockchains vulnerable
to transaction malleability attacks, like BCH or ZEC.
Instead, Arwen can only use absolute timelocks i.e.,
CheckTimeLockVerify [35].

8. BIDIRECTIONAL RFQS
The following Arwen RFQ protocol is bidirectional,

because it allows Alice to both buy and sell coins from
her user escrow, and to both buy and sell coins from
her exchange escrow. A bidirectional protocol is useful
for high-frequency trading strategies, where the trader
quickly moves coins back and forth.

Like the unidirectional protocol of Section 5, each off-
blockchain RFQ trade in the bidirectional protocol is
backed by a user escrow (with expiry time twA) and an
exchange escrow (with expiry time twB). The protocol
for opening these escrows remains identical to the one
in Section 3.2. Both escrows must be open during a
trade (rather than expired, frozen, or closed). In what
follows, we first overview the technical tools used in our
bidirectional protocol, describe the off-blockchain trad-
ing protocol, and explain how escrows can be securely
closed when one party becomes malicious or uncooper-
ative. The transaction diagram for the user escrow and
exchange escrow is in Figure 4.

8.1 Technical tools
We continue to execute trades using HTLCs, where a

trade is executed by revealing the solution x to a puzzle
y, where y = H(x). However, but there are several other
technical tools needed in order to make this protocol
bidirectional. We outline some tools below.

Four puzzles transactions. In the unidirectional
protocol, there was only a single type of puzzle transac-
tion that could spend the output of each escrow. In the
bidirectional protocol, there are four puzzle transactions
per escrow: payU postU, payU postE, payE postU, and
payE postE. This is true for both the user escrow and
the exchange escrow. The only difference between the
puzzles for the user escrow puzzles and the puzzles for
the exchange escrow is that user escrow puzzles have
tw = twA and exchange escrow puzzles have tw = twB.
The user will only post a puzzle transaction if the ex-
change aborts a trade. The exchange will post a puzzle
transaction if the user aborts a trade or if the user fails
to cooperatively close an escrow before it expires.

payE and payU puzzles. By having both payE and
payU puzzles for each escrow, each escrow can be used
to both buy and sell coins. In a payE puzzle, the puzzle
locks coins that pay to the exchange once the exchange
reveals x in a solve transaction, before time τA. The
payE puzzle transaction has an HTLC smart contract

that is similar to the one in Figure 2 of our unidirectional
protocol, using timelock τA and puzzle y. In a payU
puzzle, the puzzle locks coins that pay to the user, once
the user reveals x in a solve transaction before time
τB . The payU puzzle has an HTLC smart contract that
is similar to the one in Figure 3 of our unidirectional
protocol using timelock τB and puzzle y.

If the user is doing a trade that buys coins from the
user escrow while selling coins from the exchange es-
crow, we would use a payU puzzle that spends the user
escrow and a payE puzzle that spends the exchange es-
crow. Meanwhile, to buy coins from the exchange es-
crow while selling coins from the user escrow, we use
a payE puzzle that spends the user escrow, and payU
puzzle that spends the exchange escrow.

postU and postE puzzles. A postU puzzle transaction
can only be posted to the blockchain by the user. The
postU puzzle transaction is initially formed and signed
by the exchange, and then sent to user; the user can
later post this transaction to the blockchain if the ex-
change becomes uncooperative. The analogous postE
puzzle transaction can only posted by the exchange

Two cashout transactions. The postU cashout is
signed by the exchange and sent to the user, and is used
to unilaterally close an escrow when all trades against
the escrow completed successfully. The postE cashout,
which is signed by the user and sent to the exchange, is
used to cancel RFQ quotes.

Cancelling transactions. Arwen’s bidirectional
RFQ protocol no longer relies on “the magic of unidirec-
tionality” (Section 5.3). Instead, we “overwrite” trans-
actions resulting from old trades by cancelling them,
adapting the idea of justice transactions from the Light-
ning Network [29].

Every postE-type transaction, which is first signed by
the user and then sent to the exchange, can be cancelled
by the exchange using the cancel value CE . The cancel
value CE is randomly chosen and kept secret by the ex-
change. To cancel the postE transaction, the exchange
reveals CE to the user. The cancel value CE protects the
user if the exchange posts a canceled postE transaction
to the blockchain, as follows. The postE transaction
contains a value jE such that jE = H(CE), and every
output on the postE transaction that pays out to the
exchange also includes the following smart contract:

“The coins may only be paid to the exchange
after time tw , OR the coins return to the
user if the user reveals the cancel value cor-
responding to jE .”

Then, if the exchange misbehaves by posting a can-
celled transaction, the user has can retaliate via a justice
transaction anytime before tw . The justice transaction
reveals CE and is posted unilaterally by the user, allow-
ing her to claim all the coins in the canceled transaction
anytime before time tw (see Figure 4).

Previous transactions. The following notation
is useful for our protocol description and analysis. Let
pay∗ postE be a puzzle transaction from the current
trade (where ∗ is either U or E). For convenience, we use
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the notation prev(pay∗ postE) to indicate the transac-
tion from a previous trade that is (a) held by the ex-
change and (b) spends the same escrow as the pay∗ postE.

Differences from the Lightning Network. Our
bidirectional protocol has many things in common with
the payment channel design of the lightning network.
However, there are some important differences. To sup-
port coins that don’t have a transaction malleability
fix, e.g., SegWit, additional constraints are placed on
our design. Unlike lightning we can not use the rel-
ative timelocking mechanism CheckSequenceVerify [9],
instead we can only use the absolute timelocking mech-
anism CheckLockTimeVerify [35]. Thus, our escrows al-
ways have a fixed time before they must be closed. Ad-
ditionally, as discussed in Section 7, due to the threat of
transaction malleability any transactions which require
signatures from both parties must spend from a trans-
action which is already confirmed on-blockchain. This
requirement results in a slightly different breach remedy
mechanism. Unrelated to malleability, our protocol is
focused on trading cross-chain at centralized exchanges,
rather than on peer-to-peer payments, so we have the
escrow fee mechanism to enable traders to open escrows
even when they do not already hold any of those coins
(see Section 3.5).

8.2 Security assumptions.
Timelocks. The security of this protocol follows be-
cause we set the timelocks to be

τA > max(twA, twB) + 2% τB > τA + 2% (2)

where % is the time required for transaction be reliably
confirmed on the blockchain. Importantly, notice that
there is no relationship between the escrow expiry times
(twA, twB), which means we can pair any user escrow
and exchange escrow, regardless of their expiry time.

Closing escrows in a timely manner. To with-
stand attacks by a compromised or malicious user:

The exchange must close its user escrows be-
fore they expire at time twA, and its ex-
change escrows before they expire at twB.

To withstand attacks by a compromised or unresponsive
exchange:

The user must close her user escrows before
they expire at time twA, and her exchange
escrows before they expire at twB.

If the user forgets to do this, an honest exchange will
close the escrow on the user’s behalf, but a malicious
exchange may be able to steal coins from the escrow.
Also, if a trade aborts or the exchange refuses to coop-
eratively close an escrow, the user must sometimes come
online at a later time in order to recover her coins. This
coin recovery periods are only required if the exchange
becomes unresponsive or hacked, and the user will al-
ways learn exactly what the coin recovery period is at
the time she attempts to close her escrows.

8.3 Off-blockchain RFQ trades.
Before each RFQ begins, we have the following off-

blockchain setup step. This setup could happen at any
time (even immediately after the previous trade).

Setup. The exchange chooses random solution x,
computes y = H(x), and sends the puzzle y to the
user. The exchange also chooses a two random cancel
values CE,A and CE,B, computes jE,A = H(CE,A) and
jE,B = H(CE,B), and sends jE,A and jE,B to the user.
The solution x and cancel values CE,A, CE,B are kept se-
cret by the exchange. The user responds by choosing a
random secret cancel value CU , computing jU = H(CU ),
and sending jU to the exchange.

Then, each RFQ is an off-blockchain protocol com-
prising the following four steps. In the following pro-
tocol description, we assume that Alice specifies the
amount of coin she wishes to buy in the Request stage.1

Request. Alice requests a quote, indicating what
escrow she wants to sell coins from, and what escrow
she wants to buy coins from, and the amount of coins
she wants to buy. If Alice is selling from the user escrow,
this protocol uses payE puzzles on the user escrow and
payU puzzles on the exchange escrow. If Alice is buying
from the user escrow, we use payU puzzles on the user
escrow and payE puzzles on the exchange escrow.

Alice then sends the exchange the following:

1. a payU postE puzzle transaction that (a) locks
the amount of coins she is buying under puzzle
y. If Alice is buying coins from the user escrow,
this payU postE puzzle transaction (b) spends the
output of the user escrow and (b) can be cancelled
under CE,A. If Alice is buying coins from the ex-
change escrow, this payU postE puzzle transac-
tion (b) spends the output of the exchange escrow
and (b) can be cancelled under CE,B.

As an example, refer again to Figure 1, and suppose
after the second trade in the Figure Alice requests a
quote “Buy 2 BTC for some LTC.” In this case, Alice
would send the exchange a payU postE puzzle transac-
tion that (a) locks 2 BTC under puzzle y, (b) spends
the output of the user escrow, and (c) can be cancelled
using cancel value CE,A.

Quote. The exchange responds with the quote—“2
BTC can be bought for 200 LTC, open for time δ”. To
commit to the quote, the exchange signs and sends Alice
the following three items.

1. A payU postU puzzle transaction that (a) locks
the amount of coins Alice is buying under puzzle
y, and (b) can be cancelled using cancel value CU .
If Alice is buying coins from the user escrow, this
payU postU puzzle transaction (c) spends the out-
put of the user escrow. Otherwise, this payU postE
puzzle transaction (c) spends the output of the ex-
change escrow. (This puzzle is analogous to the

1For a sell-side RFQ, we could prefix the flow described
here with two additional messages: (1) the user indi-
cates an amount of coin she wishes to sell and requests
a quote, and (2) the exchange provides the user with
the quote with the amount she can buy.
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puzzle sent to Alice during the quote phase of the
unidirectional protocol in Section 5.2.)

2. A payE postU puzzle transaction that (a) locks
the amount of coins Alice is selling under puzzle
y, and (b) can be cancelled using cancel value CU .
If Alice is selling coins from the user escrow, this
payU postU puzzle transaction (c) spends the out-
put of the user escrow. Otherwise, this payU postE
puzzle transaction (c) spends the output of the ex-
change escrow.

3. If Alice buying from user escrow, the cancel value
C′E,A from the previous trade. Otherwise, the can-
cel value C′E,B from the previous trade. (This can-
cels prev(payU postE), so that the current payU postE
puzzle is the only uncancelled puzzle transaction
held by the exchange for the escrow spent by this
puzzle.)

At this point, the user can either place the order, or
cancel the quote.

Order. To place the order, the user sends the ex-
change the following two items.

1. A payE postE puzzle that (a) locks the amount
of coins Alice is selling under puzzle y. If Alice is
selling coins from the user escrow, this payE postE
puzzle transaction (b) spends the output of the
user escrow and (c) can be cancelled under CE,A.
Otherwise, this payE postE puzzle transaction (b)
spends the output of the exchange escrow and (c)
can be cancelled under CE,B. (This is analogous to
the puzzle sent to the exchange during the Order
phase in Section 5.2.)

2. The cancel value C′E from the previous trade. (This
cancels prev(payU postU) and prev(payE postU).)

Once the user places the order, she cannot back out
of the order. This is because (1) the only uncancelled
puzzles Alice holds are the current payU postU and
payE postU puzzles for this trade, and (2) the exchange
knows the solution x and thus has the ability to unilater-
ally claim the coins the user is selling in this trade by (a)
posting the payE postE transaction to the blockchain,
and then (b) revealing x in a solve transaction.

Execute. Once the order is placed, the exchange sends
the user the following four items. This execute phase is
not performed if the user cancels the quote.

1. If Alice selling from the user escrow, the cancel
value C′E,A from the previous trade. Otherwise,
the cancel value C′E,B from the previous trade.
(This cancels prev(payE postE). At this point in
the protocol, the only uncancelled puzzle transac-
tions held by the exchange are the current payE postE
and the current payU postE puzzle transactions.)

2. The solution x for the current trade.

3. Two postU cashout transactions, one for the user
escrow and one for the exchange escrow. Both
of the transactions reflect the balance in the two

escrows after this trade. (This last step is done be-
cause the solution to the payU postU puzzle trans-
action may only be posted by the user after time
tw ; to avoid requiring the user to come online at
time tw to post the solution, we instead have the
exchange release a cashout transaction.)

Cancel Quote. If the user does not want to place an
order, then the user sends the following after receiving
the Quote message.

1. A postE cashout that (a) resets the balance of
the escrow as it was before the aborted trade. If
Alice is buying coins from the user escrow, the
postE cashout (b) spends the output of the user
escrow and (b) can be cancelled under CE,A. Oth-
erwise, the postE cashout (b) spends the output of
the exchange escrow and (c) can be cancelled un-
der CE,B. (This cashout replaces the payU postE
transaction that Alice sent to the exchange as part
of the Request message in the current trade.)

2. The cancel value CU from the current trade. (This
cancels both the current payU postU and the cur-
rent payE postU puzzles. However, prev(payU postU)
and prev(payE postU) remain valid.)

8.4 Closing an escrow.
The process for cooperatively closing these escrow is

identical to that of unidirectional RFQ protocol of Sec-
tion 5.4. We now sketch how each party can unilaterally
close escrows, assuming that all trades against these es-
crows completed successfully. Recall that these proce-
dures are only required if one party becomes malicious
or unresponsive.

8.4.1 Unilateral close for the user.
The user must remember to close the both escrows

before they expire at time tw . If the outputs of both
the user escrow and the exchange escrow are unspent,
then the user can unilaterally close both the escrows by
posting the most recent postU cashout transaction for
that escrow.

Suppose that upon attempting to close an escrow, the
user sees that exchange has posted a cancelled postE
transaction spending the output of that escrow. In this
case, the user can immediately use the cancel value to
post a justice transaction that claims, for the user, all
coins in the cancelled transaction. This is possible be-
cause the user is expected to close the escrow before it
expires at time tw AND all coins in a postE transaction
that pay to the exchange are locked until time tw . This
is why it is never in the interest of a party to post a
cancelled transaction!

Next, suppose that upon attempting to close an es-
crow, the user sees that exchange has posted the payE postE
puzzle transaction from the current trade, but the out-
put of the other escrow is unspent. In this case, the
user immediately posts the postU cashout transaction
to unilaterally close the other escrow. No further action
is required from the user; the exchange can recover the
coins locked in the current postE payE puzzle transac-
tion by posting the solve transaction after time tw .

17



Finally, suppose that upon attempting to close an es-
crow, Alice sees that exchange has posted the payU postE
puzzle transaction from the current trade. Both es-
crows must be frozen. If the output of the other es-
crow is unspent, then the user immediately posts the
current payE postU puzzle for that escrow. The user
then comes online between time τA and τB to recover
the coins from the current trade, using a procedure sim-
ilar to that used to recover from frozen escrows in Sec-
tion 5.6. The same is done if the other escrow is spent
with a payU postU transaction. If the other escrow is
spent using any other transaction, then no further ac-
tion is required from the user.

Unilateral close after a Cancelled Quote What happens
when Alice must unilaterally close an escrow after a
Cancel Quote? This case is very similar to the case
described in Section 8.5.2. Before tw , the user must post
the payU postU puzzle from the Cancelled-Quote trade.
The exchange must then come online after time τB for
the current trade, in order to claim the coins locked in
the puzzle by posting a puzzle-refund transaction. That
closes one of the escrows. To close the other escrow,
the user can post the postU cashout transaction from
previous completed trade before time tw .

8.4.2 Unilateral close for the exchange.
The exchange must also remember to close the both

escrows before they expire at time tw .
If either output is spent using a cancelled transaction,

the exchange immediately posts a justice transaction
that claims all the coins in the escrow.

If the outputs of both escrows are unspent, the ex-
change can unilaterally close each escrow by posting the
most recent payE postE and payU postE puzzle trans-
actions. If one escrow is already spent using a current
payE postU puzzle transaction, the exchange immedi-
ately posts the current payU postE puzzle for the other
escrow (assuming that escrow is unspent). If one es-
crow is already spent using a current payU postU puzzle
transaction, the exchange immediately posts the current
payE postE puzzle for the other escrow (assuming that
escrow is unspent).

In all of the above cases, the exchange must come
online between time (tw , τA) and post the solve trans-
action for the payE puzzle, releasing the coins locked
in the payE puzzle to the exchange’s wallet. The ex-
change can unilaterally release the coins locked in the
payU puzzle by posting a puzzle-refund transaction af-
ter time τB. An honest exchange would send these coins
to the user’s wallet (because they rightfully belong to
the user), but a malicious exchange would claim these
coins for itself. This is why a user must remember to
close her escrows before they expire (at time tw < τB)!

8.5 Dealing with an aborted trade.
What happens when a trade aborts? A trade can

abort after the Request, after the Quote, or after the
Order. If the exchange elects not to provide the user
with a Quote, nothing happens and the user can keep
trading. If the user elects not to place an Order and also
refuses to send a Cancel Order message, the exchange
must stop trading and close the escrows. Finally, if the

exchange aborts after the Order is placed, the user must
stop trading, freeze and then close the escrows.

8.5.1 Exchange aborts after Request
Suppose the exchange elects not to provide a Quote

after a Request message is sent. This is not a problem,
because the exchange will not want to post the current
payU postE received during the Request. This follows
because the current payU postE transfers coins to from
the exchange to Alice (i.e., it is a payU puzzle), and thus
will result in more coins for the user and fewer coins for
the exchange. Instead, the exchange will always prefer
to use the puzzles from the previous completed trade.

8.5.2 User aborts after Quote
Suppose Alice decides to abort after receiving a Quote,

while refusing to send the Cancel Order message. In this
case, the exchange should immediately close the escrows
involved in this trade, as follows.

First, the exchange posts the payU postE puzzle from
the current trade. The exchange must then come online
after time τB for the current trade, in order to claim
the coins posted in the current payU postE puzzle by
posting a puzzle-refund transaction. (If the exchange
cannot post the payU postE puzzle because its escrow is
already spent, it follows that the user must have either
(a) posted a cancelled transaction, (in which case the
exchange can reclaim its coins through a justice trans-
action) or (b) posted a payU postU puzzle (in which
case the exchange’s again posts the puzzle-refund after
time τB). That closes one of the escrows.

What about the other escrow? There are two cases:

Case 1: The exchange holds an uncancelled payE postE
puzzles from the previous trade that spends this escrow.
The exchange must post this payE postE puzzle before
time tw . The exchange must then must come online be-
tween time tw and τA for the previous trade, and claim
the locked coins by posting a solve transaction.

Case 2: The exchange holds an uncancelled payU postE
puzzles from the previous trade that spends this escrow.
The exchange must post the payU postE puzzle from
the previous trade before time tw . Alice must then must
come online between time tw and τB for the previous
trade, in order to claim the coins in the puzzle trans-
action by posting a solve transaction. This is possible
because the exchange has revealed the solution x′ to
Alice as part of the previous trade. Importantly, Alice
will always know that she is supposed to take this ac-
tion, because she is expected to close this escrow before
time tw using the cashout from the previous trade (see
‘Unilateral close after cancelled quote’ in Section 8.4). If
Alice finds that she cannot do this because the exchange
has already posted the payU postE from the previous
trade, then Alice knows she must come online between
time tw and τB.

Finally, if the exchange cannot close this escrow be-
cause its output is already spent, it follows that (a) the
user posted a cancelled transaction (in which case the
exchange can reclaim its coins through a justice trans-
action) or (b) posted a uncancelled payE postU puzzle
(in which case the exchange does as in Case 1), or (c)
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posted an uncancelled payU postU puzzle (in which case
the exchange does as in Case 2), or (d) posted an un-
cancelled postU cashout transaction from the previous
trade (in which case the exchange has earned its rightful
balance of coins).

8.5.3 Exchange aborts after Order.
Suppose the exchange decides not to Execute after an

Order. This causes the user to freeze the escrows.
After the Order message is sent, there are five uncan-

celled puzzles: the four puzzles from the current trade,
plus one additional puzzle from the previous trade, i.e.,
the prev(payE postE) puzzle. We argue that the prev(payE postE)
puzzle would never be posted. Why? This follows be-
cause exchange would always prefer to post the current
payE postE puzzle over the previous puzzle. There are
two cases. (1) The previous puzzle is a payE postE
type puzzle. In this case, it follows that the current
payE postE puzzle pays the exchange more coins than
then previous puzzle, and so the exchange would prefer
to post the current puzzle. (This is the “magic of unidi-
rectionality”, see Section 5.3.) (2) The previous puzzle
is a payU postE type puzzle. In this case, the current
payE postE puzzle pays out to the exchange, while the
previous puzzle pays out to the user. It follows that
the current payE postE puzzle pays the exchange more
coins than then previous puzzle, and so the exchange
would prefer to post the current puzzle.)

Therefore, only the four puzzles from the current trade
matter, and we have essentially reduced back to the
frozen case from the unidirectional protocol. Thus, if
the exchange aborts after the Order, the user would
try to cooperatively close her escrows using the balance
from the previous trade. If that fails, she would unilat-
erally post the payU postU puzzle. (This allows Alice
to get paid if the exchange decides to execute the trade
on-blockchain by revealing the solution x.) Once that
puzzle is confirmed on the blockchain, the user would
then post the payE postU puzzle. (This forces the ex-
change to reveal the solution x between time (tw , τA) if
the exchange decides it wants to execute the trade on
the blockchain.) The user would then come online be-
tween time τA and τB and use the usual procedure for
recovering from frozen escrows.

9. BIDIRECTIONAL LIMIT ORDERS
The following protocol is for bidirectional fill-or-kill

limit orders. The protocol allows Alice to place a sin-
gle limit order for a specified amount and limit price
against a (user escrow, exchange escrow) pair. The or-
der remains open until the limit price is met for the en-
tire amount. Once the limit price is met, the exchange
executes the order. Alice also has the option to cancel
the limit order at any time.

Technically speaking, this protocol is almost identical
to the bidirectional RFQ protocol of Section 8; the key
differences is that Alice can now cancel an order once
it is placed. The security model and timelocks for this
protocol are identical to those in Section 8.2.

9.1 Off-blockchain Limit Order trades.

Limit Order. To place the limit order, Alice specifies
the amount and the limit price. For example, “I will
sell 200 LTC at the price of 2 BTC”. The limit order
remains open until either (1) the order is executed by
the exchange, or (2) the order is cancelled by Alice. To
place the limit order, Alice and exchange execute the
“Setup”, “Request”, “Quote” and “Order” steps of the
bidirectional RFQ protocol in Section 8.3.

Execute Limit Order. To execute the order, the ex-
change performs the “Execute” step of the bidirectional
RFQ protocol in Section 8.3. This fills the order at the
limit price for the specified amount.

Cancel Limit Order. Alice can cancel the limit
order at any time. Cancelling is cooperative—Alice
cannot prevent the exchange from refusing to partici-
pate in the protocol specified below. However, if the
exchange does complete the protocol, the order cannot
be executed even if the exchange becomes unresponsive
or malicious. The protocol is as follows.

1. The user chooses a random secret cancel value
C†U , computes j†E = H(C†U ), and sends j†U to the
exchange. The exchange chooses a two random
cancel values C†E,A and C†E,A, computes j†U,A =

H(C†E,A) and j†U,B = H(C†E,B), and sends j†E,A and

j†E,B to the user.

2. Alice sends the exchange a postE cashout that
overwrites the payE postE puzzle that the exchange
obtained from during the Limit Order step. This
postE cashout (a) reflects the balance in the es-
crow before the limit order was placed. If Alice
is selling coins from the user escrow, this postE
cashout transaction (b) spends the output of the

user escrow and (c) can be cancelled under C†E,A.
Otherwise, it (b) spends the output of the ex-

change escrow and (c) can be cancelled under C†E,B.

3. The exchange sends Alice a postU cashout trans-
action for the user escrow and a postU cashout
transaction for the exchange escrow. Both of these
cashout transactions can be cancelled under C†E .
These postU cashouts reflects the balance in the
escrow before the limit order was placed.

The exchange also sends the cancel value for the
payE postE puzzle transaction—namely, CE,A if
Alice is selling coins from the user escrow, and
CE,B otherwise. At this point the Limit order is
canceled, since the exchange can no longer claim
coins from the PayEPostE puzzle. The remaining
steps in this cancel protocol return the escrows to
the open state; if one party aborts, the counter-
party must freeze and then close the escrows.

4. Alice sends the exchange CU , cancelling the payE postU
and payU postU from the Limit Order.

Alice sends the exchange a postE cashout that
overwrites the payU postE puzzle transaction that
the exchange obtained as part of the Limit Order.
This cashout (a) reflects the balance in the es-
crow before the limit order was placed. If Alice is
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buying from the user escrow, this postE cashout
transaction (b) spends the output of the user es-

crow and (c) can be cancelled under C†E,A. Oth-
erwise, it (b) spends the output of the exchange

escrow and (b) can be cancelled under C†E,B.

5. The exchange sends the cancel value for the payU postE
puzzle transaction from the limit order—namely,
CE,A if Alice is buying coins from the user escrow,
and CE,B otherwise.

10. RELATED WORK
Atomic swap protocols. The first description of
an atomic swap is commonly attributed to TierNolan’s
2013 forum post [34]. A number of works have since
explored on-blockchain atomic swaps for various pur-
poses, beyond payments [32, 29, 11, 27, 20, 22, 3],
including improved fungability [21, 15], trading across
blockchains [5, 4] and forks [23] or between ERC-20 to-
kens on the Ethereum blockchain [28].

Layer-two protocols. A layer-two blockchain pro-
tocol [25] binds off-blockchain transfers of funds to an
on-blockchain smart contract. Layer-two protocols typi-
cally do not require the addition of a trusted third party,
trusted oracle, or trusted gateway. There has been a
variety of work on layer-two protocols for Bitcoin [32,
29, 11, 15, 27, 20], where transfers of funds are accom-
plished via atomic swaps. In 2013, Spilman’s unidirec-
tional payment channel was the first to use the “magic
of unidirectionality” that Arwen uses in Section 5.3.
Meanwhile, bidirectional payment channels for Bitcoin
payments were first proposed by [11, 29], and signifi-
cant progress has been on made on the Lightning Net-
work [2]. Today’s Lightning Network requires SegWit
(Section 7), and thus only supports Bitcoin and Lite-
coin, while Arwen supports more Bitcoin-derived coins,
including BCH, ZEC. Finally, while [32, 29, 11, 15] all
rely on HTLC smart contracts (i.e., that use puzzle y
with solution x such that y = H(x)), [27, 20] show
how to build layer-two protocols “scriptlessly”, without
smart contracts, by cleverly leveraging the digital sig-
natures on transactions.

Smart contracts on Ethereum are Turing-complete,
and thus support a dramatically richer set of operations
than smart contacts written in Bitcoin Script. (Bit-
coin script is similar to Assembly language, with a few
cryptographic operators.) Thus, it is no surprise that
Ethereum also supports unidirectional and bidirectional
channels (“state channels”) [22], as well a payment chan-
nel network called Raiden [3]. Plasma [28] is a pro-
posal for a layer-two decentralized exchange protocol
on Ethereum. Truebit is another fascinating approach,
where computations (rather than payments) are moved
off the Ethereum blockchain via a layer-two protocol [33].
Generally speaking [22, 3, 28, 33] are for Ethereum and
ERC-20 tokens only, and so they leverage and adapt to
the full richness of Ethereum smart contracts. Mean-
while, Arwen’s Ethereum leg is designed to be function-
ally equivalent to Arwen’s Bitcoin leg, and so it very
strictly mimics the UTXO model used in Bitcoin scripts.

BOLT [14] is a layer two protocol with very strong

privacy guarantees designed to extend the privacy prop-
erties of Zcash to a layer-two payment channel.

Because Arwen is focused on the cross-blockchain trad-
ing use case,Arwen must support as many coins as pos-
sible. For this reason, the Arwen protocols are designed
around the “lowest common denominator” of Bitcoin-
derived coins. For this reason we do not assume SegWit
support.

Fees. Layer-two protocols, that are focused on pay-
ments, typically structure incentives around transac-
tion fees, i.e., fees earned when payments are made.
This does not solve the problem of lockup griefing (Sec-
tion 2.5), because no fees are earned if no payments are
made. Arwen solves the lockup griefing problem via
escrow fees and reputation.

Komodo [5] also looks to solve the lockup griefing
problem for on-blockchain atomic swaps between peers.
The Komodo approach has Alice first pay Bob an on-
blockchain fee before the swap begins, while Bob must
deposit coins as a collateral during the swap, which
will be returned to Bob once the swap completes. Ko-
modo fees are less efficient because they are paid on-
blockchain; Arwen escrow fees are paid off-blockchain.
Also the peer-to-peer nature of Komodo means that Bob
has a strong incentive to walk away after Alice pays her
fee; by contrast Arwen escrow fees are sent from user to
exchange, and the exchange’s reputation is at stake if it
walks away with the fee without establishing an escrow.

Sparkswap [4] is a peer-to-peer trading platform for
BTC and LTC built on top of Lightning. Sparkswap
uses “deposit fees” to address incentives in its trading
instruments (as opposed to premium-free American call
options, see Section 2.6), but lacks a solution to the
lockup griefing problem (Section 2.5).

11. CONCLUSION
Arwen is a layer-two blockchain protocol that allows

traders to benefit from the liquidity at a centralized ex-
change without trusting the exchange with custody of
their coins. Instead, Arwen trades are backed by on-
blockchain escrows, and executed via fast off-blockchain
atomic swaps. Arwen solves many of the incentive is-
sues that emerge when payment protocols are repur-
posed for cryptocurrency trading. Arwen also supports
a wider spectrum of coins, including Bitcoin, “Bitcoin
fork” coins that do not have SegWit support (Bitcoin
Cash, Zcash, etc.), Ethereum, and ERC-20 tokens.
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